当前位置:首页>文章中心>行业新闻> led路灯的散热与寿命

led路灯的散热与寿命

发布时间:2013-06-26 点击数:1330
LED光源受到青睐的主因,不外乎产品寿命长、光-电转换效率高、材料特 性可在任意平面进行嵌装等特性。但在发 展日常照明光源方面,由于需达到实用的“照明”需求,原以指示用途的LED就无法 直接对应照明应用,必须从芯片、封装、载板、制作技 术与外部电路各方面进行强化,才能达 到照明用途所需的高功率、高亮度照明效用。 多芯片 整合光源模组仍需考量成本效益最大化,环保光 源需求增加高功率白光LED应用出线。 
就市场需求层面观察,针对照 明应用市场开发的白光LED,可以说 是未来用量较高的产品项目,但为达到使用效用,白光LED必须针 对照明应用进行重点功能改善。其一是针对led芯片进行强化,例如,增加其光-电转换效率,或是加大芯片面积,让单个LED的发光量(光通量)达到其设计极限。其二,属于较 折衷的设计方案,若在持续加大单片LED芯片面 积较困难的前提下,改用多片LED芯片封 装在同一个光源模组,也是可 以达到接近前述方法的实用技术方案。
在众多 环保光源应用方案中,LED是相对 其他光源方案更为节能、便于组 装设计的一种光源技术,其中,在照明光源应用中,高功率白光LED使用则 为最频繁的发光元器件,但白光LED虽在发光效率、单颗功 率各方面表现均有研发进展,实际上白光LED仍存在发光均匀性、封装材料寿命等问题,尤其在 芯片散热的应用限制,则为开发LED光源应 用首要必须改善的问题。
以多芯 片封装满足低成本、高亮度设计要求
就产业实务需求检视,碍于量产弹性、设计难 度与控制产品良率/成本问题,LED芯片持 续加大会碰到成本与良率的设计瓶颈。一昧的 加大芯片面积可能会碰到的设计困难,并非技 术上与生产技术办不到,而是在 成本与效益考量上,大面积之LED芯片成本较高,而且对 于实际制造需求的变更设计弹性较低。
反而是 利用多片芯片的整合封装方式,让多片LED小芯片 在载板上的等距排列,利用打线连接各芯片、搭配光 学封装材料的整体封装,形成一光源模组产品,而多片 封装可以在进行芯片测试后,利用二 次加工整合成一个等效大芯片的光源模组,但却在 制作弹性上较单片设计LED光源用 元件要更具弹性。
同时,多片之LED芯片模组解决方案,其生产 成本也可因为芯片成本而大幅降低,等于在 获得单片式设计
案同等光通量下,拥有成 本更低的开发选项。
应用芯 片表面制程改善也可强化LED光输出量
除了增 加芯片面积或数量是最直接的方法外,也有另 一种针对芯片本身材料特性的发光效能改善。例如,可在LED蓝宝石 基板上制作不平坦的表面结构,利用此 一凹凸不规则之设计表面强化LED光输出量,即为在芯片表面建立Texture表面结晶架构。
LED封装材料需因应高温、短波长光线进行改善
在光源设计方案中,往往会 利用增加驱动电流来换取LED芯片更高的光输出量,但这会 让芯片表面在发光过程产生的热度持续增高,而芯片 的高温考验封装材料的耐用度,连续运 行高温的状态下会致使原具备高热耐用度的封装材料出现劣化,且材料 劣化或质变也会进一步造成透光度下滑,因此在开发LED光源模组时,亦必须 针对封装材料考量改用高抗热材质。
一般设计方案中,据分析采行7mm2的芯片尺寸,其发光效率为最佳,但7mm2大型芯 片在良率与光表现控制较不易,成本也相对较高;反而使用多片式芯片,如4片或8片小功率芯片,进行二 次加工于载板搭配封装材料形成一LED光源模组,是较能 快速开发所需亮度、功率表现之LED光源模 组产品的设计方案。
增加LED光源模 组元件散热方法相当多,可以从芯片、封装材料、模组之导热结构、PCB载板设 计等进行重点改善。例如,芯片到封装材料之间,若能强 化散热传导速度,快速将 核心热源透过封装材料表面逸散也是一种方法。或是由 芯片与载板间的接触,直接将 芯片核心高热透过材料的直接传导热源至载板逸散,进行LED芯片高热的重点改善。此外,PCB采行金属材料搭配与LED芯片紧贴组装设计,也可因 为减少热传导的 热阻,达到快 速散逸发光元件核心高热的设计目标。
另在封装材料方面,以往LED元件多 数采环氧树脂进行封装,其实环 氧树脂本身的耐热性并不高,往往LED芯片还 在使用寿命未结束前,环氧树 脂就已经因为长时间高热运行而出现劣化、变质的变色现象,这种状 况在照明应用的LED模组设计中,会因为 芯片高功率驱动而使封装材料劣化的速度加快,甚至影 响元件的安全性。
不只是高热问题,环氧树 脂这类塑料材质,对于光的敏感度较高,尤其是 短波长的光会让环氧树脂材料出现破坏现象,而高功率的LED光源模组,其短波长光线会更多,对材料 恶化速度也会有加剧现象。
针对LED光源应用设计方案,多数业 者大多倾向放弃环氧树脂封装材料,改用更耐高温、抗短波 长光线的封装材料,例如矽 树脂即具备较环氧树脂更高的抗热性,且在材料特性方面,矽树脂可达到处于150~180°C环境下 仍不会变色的材料优势。
此外,矽树脂 亦可分散蓝色光与紫外线,矽树脂 可以抑制封装材料因高热或短波长光线的材料劣化问题,减缓封 装材料因为变质而导致透光率下滑问题。而就LED光源模组来说,矽树脂也有延长LED元件使用寿命优点,因为矽 树脂本身抗高热与抗短波长光线优点,在封装材料可抵御LED长时间 使用产生的持续高热与光线照射,材料的 寿命相对长许多,也可让LED元件有超过4万小时的使用寿命。
led照明应用仍 须改善元件光衰与寿命问题
如果期待LED光源导 入日常照明应用,其应用 需克服的问题就会更多!因为日 常照明光源会有长时间使用之情境,往往一 开启就连续用上数个小时、甚至数十小时,那长时间开启的LED将会因 为元件的高热造成芯片的发光衰减、寿命降低现象,元件必 须针对热处理提出更好的方案,以便于 减缓光衰问题过早发生,影响产品使用体验。
另一个发展方向,是将LED芯片面积持续增大,透过大 面积获得高亮度、高光通量输出效果。但过大的LED芯片面 积也会出现不如设计预期之问题,常见的 改进方案为修改复晶的结构,在芯片 表面进行制作改善;但相关 改善方案也容易影响芯片本身的散热效率,尤其在光源应用的LED模组,大多要 求在高功率下驱动以获得更高的光通量,这会造 成芯片进行发光过程中芯片接面所汇集的高热不容易消散,影响模 组产品的应用弹性与主/被动散热设计方案。
高功率白光LED应用于日常照明用途,其实在 环保光源日益受到重视后,已经成 为开发环保光源的首要选择。但实际上白光LED仍有许 多技术上的瓶颈尚待克服,目前已 有相关改善方案,用以强化白光LED在发光均匀性、封装材料寿命、散热强 化等各方面设计瓶颈,进行重 点功能与效能之改善。
LED光源导 入日常应用的另一大问题是,如传统 使用的萤光灯具,使用超 过数十小时均可维持相同的发光效率,但LED就不同了。因为LED发光芯 片会因为元件高热而导致其发光效率递减,且此一 问题不管在高功率或低功率LED皆然,只是低功率LED多仅用于指示性用途,对使用 者来说影响相当小;但若LED作为光源使用,其光输 出递减问题会在为提高亮度而加强单颗元件的驱动功率下越形加剧,一般会 在使用过几小时后出现亮度下滑,必须进 行散热设计改善才能达到光源应用需求。

友情链接:    e时彩_安全购彩   莱利彩票登陆   兰博彩票计划   金利彩票网址   EG彩票开户